Local existence and blow up in a semilinear heat equation with the Bessel operator
نویسنده
چکیده
In this work we consider an initial one-point boundary value problem to the heat equation with the Bessel operator ut − (uxx + 1 xux) = |u| p−2u. We first prove a local existence result. Then we show that the solution blows up in finite time.
منابع مشابه
Blow up of Solutions with Positive Initial Energy for the Nonlocal Semilinear Heat Equation
In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملLiouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations
We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation ut = ∆u + |u|p−1u. We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence ...
متن کاملA Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
In this paper we study a simple non-local semilinear parabolic equation with Neumann boundary condition. We give local existence result and prove global existence for small initial data. A natural non increasing in time energy is associated to this equation. We prove that the solution blows up at finite time T if and only if its energy is negative at some time before T . The proof of this resul...
متن کاملThe existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003